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The present paper numerically investigates the near-wall correction of velocity 
readings when using hot wires to measure the flows very close to walls. It is found 
that the near-wall correction is necessary not only for the conducting wall but also 
for the adiabatic wall. For an infinitely long 5-1~m diameter hot wire, measurement 
error begins to appear at Y+< 5 for an infinitely conducting wall and at Y+< 2 for 
an adiabatic wall. In addition to the distance from wall, the wire diameter also exerts 
significant influence on the velocity measurements. However, provided the flow is 
two-dimensional (2-D), the effect of operating overheat ratio seems to be insignifi- 
cant. 
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Introduction 

In experimental studies of near-wall turbulence, it is often neces- 
sary to conduct measurements with hot-wire anemometers very 
close to the wall. With the proximity of hot wire to the wall, 
distortion of the flow field and heat transfer characteristics from 
the hot wire occur, resulting in serious measurement errors. A 
number of experimental investigations on the near-wall effects on 
hot-wire measurements have been performed but with diverse 
results. Wills (1962) suggested the incorporation of an additional 
empirically determined heat loss term that is a function of the 
distance from the wall and Reynolds number, to the conventional 
heat loss from hot-wire equation to account for the wall effect in 
laminar flow. For turbulent flow, half of the laminar correction is 
suggested without physical explanation. Oka and Kostic (1972) 
together with Hebbar (1980) confirmed that the correction could 
fall to a single curve of AU/U~=f(Y +) for different wire 
diameters when the velocity and distance from the wall are 
normalized by the wall parameters of U, and v/U,, respectively. 
The existence of such con'ection curve implies implicitly that the 
near-wall effects are independent of Reynolds number and wire 
diameter. Krishnamoorthy et al. (1985) demonstrated the impor- 
tance of the wire diameler and overheat ratio on the near-wall 
effects. Singh and Shaw (1972) pointed out that the correction is 
independent of the wall conductivity, but Bhatia et al. (1982) 
showed otherwise. 

In view of the inherent experimental difficulties of the near- 
wall measurements, it is obvious that a numerical experiment to 
study the near-wall effects would be an attractive alternative 
especially with the advent of computational fluid dynamics and 
computer hardware technology. Piercy et al. (1956) employed 
potential theory to study the two-dimensional (2-D) flow past a 
hot wire near an infinitely conducting wall. Their results largely 
underpredict the experimental correction. Bhatia et al. (1982) 
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included the viscous effect in their formulation. They considered 
the wire as a point heat source and numerically solved the 
disturbed temperature field with an assumed linear velocity pro- 
file. The initial temperature profile was based on Lauwerier's 
(1954) solution of the energy equation without the viscous dissi- 
pation term and wall effects. Their results underpredict the 
near-wall correction for Y+< 2.5 and overpredict for Y÷> 2.5 
when compared to previous experimental results of Oka and 
Kostic (1972) and Hebbar (1980). It should be noted that, in their 
calculation, the momentum equation was not solved, and the 
influence of the wire diameter was neglected, because it was 
assumed as a point. The influence of wire diameters are known to 
be important experimentally (see Wills 1962; Krishnamoorthy et 
al. 1985). The interference between the wire diameter and the 
wall would alter the flow field and influence the heat loss from 
the hot wire. Thus, it is essential to solve the momentum and 
energy equations as a coupled problem. 

The present paper aims to overcome the deficiencies of the 
previous computational methods by solving the full Navier- 
Stokes equation together with the energy equation using an NEC 
supercomputer. Some of the important parameters, such as wall 
conductivity, wire diameters, distance from the wall, and over- 
heat ratio on the near-wall measurements are investigated. 

Theoretical formulation 

The present theoretical formulation assumes steady, incompress- 
ible, 2-D flow past an infinitely long circular wire that is aligned 
parallel to the wall and normal to the flow. The wire is subjected 
to a velocity field varying linearly with distance from the wall, 
similar to that found in the viscous sublayer. Because the fre- 
quency response of the hot wire is much higher than the velocity 
fluctuation frequency in the viscous sublayer of a turbulent 
boundary layer flow, the unsteady approaching flow can be 
treated as a quasisteady flow. In this way, the present steady flow 
formulation, which greatly reduces the complexity and computing 
time, can be used to resolve the heat transfer characteristics from 
the wire near a wall, and the near-wall correction computed can 
be applied to turbulent flow on a point-by-point basis to construct 
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the instantaneous velocity. From the corrected near-wall instanta- 
neous velocity, the instantaneous wall shear stress, near-wall 
turbulence intensity, and higher-order turbulence statistics can be 
deduced (Chew et al. 1994). With a modern high-speed data- 
acquisition system, it can be done easily in a postprocessing, 
nonreal-time manner. Two extreme types of wall with simple 
boundary conditions are investigated. One has infinite conductiv- 
ity in which T = T= at the wall. The other has zero conductivity 
in which OT/OY--0 at the wall. These boundary conditions are 
identical to those adopted by Bhatia et al. (1982). 

The control volume of consideration is schematically drawn in 
Figure 1. The properties of fluid, including density, viscosity, 
conductivity, etc., are taken as constants and referenced at the 
mean film temperature. Note that the body force is expressed as 
the temperature difference, instead of density difference, accord- 
ing to Boussinesq's assumption. The following governing equa- 
tions are used to describe the flow. 
Vorticity-stream function equation: 

O~ 0f~ (Ozf/ 02D, / 0T 
U - -  + V ~  = v + -T- g fS -~  (1) 

0x  0v ~ 0v~ ! 

o~ 0 ,  
U =  O-Y' V =  - O-'-)(' V2O = -1 2  (2) 

Energy equation: 

0c, -if) (3) 
where all of the symbols in Equations 1-3  are defined in the 
conventional ways. The " - "  before the buoyant force term in 
Equation 1 indicates the case that the hot wire is above a 
horizontal solid wall, while " + "  refers to flow under a solid 
wall. The corresponding boundary conditions in Figure 1 are 
defined as follows: 

BI :  X = X  s, U ( Y )  = (Uo /h ) r ,  V=O, T= T= 

B2: Y = H,  U = (Uo/h)H,  V = O, r = ro~ 

B3: Y =  0, U =  V =  0, T =  Too or OT/OY= 0 

B4: X = X e ,  OU/OX=OV/OX=O, OT/OX=O 

B5: U = V = 0, T = r w (4) 

Here U o is the velocity at the height of h, which is also the 
location of the hot wire. The operating temperature of the hot-wire 
and free-stream temperature are T w and To, respectively. Note 

that for simplicity, we have imposed a constant streamwise 
velocity and zero vertical velocity on the top boundary B2. 
Provided that the boundary B2 is set to be far away from the hot 
wire, we reckoned that the heat transfer characteristics from the 
wire to the free stream in the presence of the solid wall along the 
boundary B3, which is of central interest to the present work, will 
not be very much affected by the above specification on B2. 
(Alternatively, the results can be viewed as the study of the 
convective heat transfer from the hot wire to the free stream and 
the near wall in a Couette flow field with the top boundary set at 
sufficient far distance from the wire.) 

To normalize the governing equations, the following wall 
parameters are chosen to be the reference scales according to the 
previous experimental and theoretical near-wall corrections: 
Velocity etc.: 

u + =  u/u~, v + =  v / u .  F = ~J/v, W = vlq/U~ 2 

(5a) 

Temperature: 

a = ( T -  Too)/(T w - T~) (5b) 

Coordinates: 

x + = x u , / , , ,  Y+ = YV~/~, (Sc) 

The governing equations are nondimensionalised and transformed 
into the following: 
Vorticity-stream function equation: 

U + _ _  + = VZW-T- 
0X + ay + 

V2F = - W 

Energy equation: 

U + ~ x + + V +  OQ 1 / 0 U + )  2 
0Y + = ~rVEQ + Ec[ 

Boundary conditions: 

BI:  X + = X  +, U + = Y  +, 

hence F = 0.5Y +2 and 

B2: Y+= H +, U + = H +, 

hence F = 0.5H +2 and 

B3: Y+= 0 +, U += V += 0, 

W + ~ 0 ,  

W = - I ,  and Q = 0  

V += 0, 

W = - I ,  and Q = 0  

hence F = 0  and Q = 0  or OQ/OY+=O 

B4: X + = Xe + , 

OU+/OX += OV+/OX += OW/OX += OQ/OX += 0 

B5: U += V += 0, F = Fcons t , 

a constant on the hot-wire surface, and Q = 1 

where 

d 3 C o 
Gr = g~(Tw- T=)-~-, Pr = i~---~, 

Ec 
CATw - r~) 

U,d 
Re¢ = 

V 

(6a) 

(6b) 

(7)  

(8)  

Here Gr and Pr are the Grashof and Prandtl numbers, and Re~ 
and Ec are the modified Reynolds and Eckcrt numbers, respec- 
tively, whose characteristic velocity is the friction velocity U~ 
instead of free-stream velocity. The friction velocity is taken to 
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be the undisturbed qua:atity at the inflow. In our subsequent 
calculations, the average Nusselt number is defined as follows: 

l o ~  qd H 
Nu= A Y, k (T  _ T=) dA ark(Tw- To~) (9) 

where H is the heat t%x through the closed circulation that 
surrounds the wire, and d is the wire diameter. 

N u m e r i c a l  i m p l e m e n t a t i o n  

Because of the difference in geometry between the circular wire 
and flat wall, the mesh system used by Lewis (1979) in his study 
of steady flow between a rotating circular cylinder and fixed 
square cylinder is adopted for the present work. The surface of 
the cylindrical hot wire is divided into equal arc length at a 
nominal interval of ~r/36. Rectangular grids in the flow domain 
then intersect the cylinder surface at these collocated points. The 
rectangular meshes are distributed nonuniformly throughout the 
flow domain so that they are much denser around the wire and 
the wall for better spatia]L resolution in the calculation of the flow 
field and the associated heat flux from the hot wire. 

Following Lewis (1979), a central finite difference approxima- 
tion to the governing equations with the difference correction (to 
ensure second-order accuracy) is used for discretization of the 
governing equations in the present work. The interested reader 
should refer to the original paper for details regarding the imple- 
mentation of the finite difference forms. As similarly carried out 
in Lewis, the boundary condition for the vorticity term pertaining 
to the hot-wire surface and the wall in the solution of the 
vorticity-transport equation is derived using Taylor series expan- 
sion for the stream function (or velocity terms), the velocity 
boundary conditions and Equation 6b. In this way, the elliptic 
Equations 6 and 7 combined with the boundary conditions speci- 
fied are solved iteratively using the method of successive over-re- 
laxation (SOR) with rel~txation parameter to F. The numerics are 
programmed in double-precision, and the iteration is continued 
until the maximum difference between the respective values of F 
(and W) on successive ilerations is less than e F (and ew), which 
is set at 10 -4 . 

In the numerical implementation, the hot wire is set at X += 0, 
the inflow is taken at X += -5.0,  and the outflow is set far 
downstream between X += 60 ~ 80 (Bhatia et al. 1982). The 
distance of the wire from the wall ranges from Y+= 0.5 to 8.0; 
the accompanying typical nondimensional diameter of the wire is 
around d + ( -  = U,d/v)  -- 0.125. The top boundary (B2) is set at a 
distance of 10 wall units above the wire. Different grid sizes are 
used in the computation with equal arc length interval on the wire 
ranging from ~r/18 to ~r/36 and smaller. It is found that the 
results are fairly grid invariant and the present work is carried out 
nominally for equal arc length interval of 'tr/36 on the hot-wire 
cylinder. A single typical run for one configuration using the 
NEC SX-1A supercomputer takes between 20 to 50 CPU min- 
utes, depending on the wire diameter and friction velocity. 

Results and discussions 

The heat loss from a ,:ircular cylinder in uniform flow, i.e., 
without wall effects was computed at the low Reynolds number 
range normally encountered in near-wall hot-wire measurements. 
The numerical code is easily altered to reflect uniform velocity 
field at the inflow boundary (B1), and the bottom boundary (B3) 
where the wall resides is replaced with a similar boundary 
condition as reflected in B2. Results of the computation are 
plotted in term of Nusse]t number (Nu) versus Reynolds number 
(Re, based on free-stream velocity and diameter of wire) in 
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Figure 2 and compared to Oseen's solution and Kramer's experi- 
mental formula for Reynolds number ranging from 0.1 to 40,000. 
Also shown is the empirical formula based on experiments put 
forth by Collis and Williams (1959). Our results agree with 
Oseen's solution for Re < 0.25, but the deviation increases with 
increasing Reynolds number for Re > 0.25, which can be at- 
tributed to the failure of linear assumption of Oseen's solution. 
They are slightly lower than those given by Kramer's formula. 
The discrepancies may be caused by the three-dimensional (3-D) 
effect in measurement, which is neglected in the present 2-D 
theoretical formulation. The resolution of the experimental for- 
mula at such low Reynolds number range may also be poor. 
When compared to Collis and Williams formula, our computed 
Nu assumes a slightly larger quantity for the range of Re < 0.67 
and shows a slower increase with Re for Re > 0.67. Generally, 
the reasonable agreement with experimental results augers well 
for the theoretical formulation and numerical method adopted in 
the present investigation. The results obtained in Figure 2 are 
important, because they form the reference against which the 
subsequent computations with wall effects are compared in order 
to obtain the near-wall corrections. 
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Figure 3 Heat losses at different shear rates for conducting 
(solid lines) and adiabatic (dashed lines) walls for a 5-1~m 
diameter hot wire 

Int. J. Heat and Fluid Flow, Vol. 16, No. 6, December 1995 473 



Near-wall corrections of single hot wires: Y. 7-. Chew et al. 

Influence of  wall  conductivi ty 

The heat loss from the hot wire near an infinitely conducting wall 
(T = T= at the wall) and an adiabatic wall (~T/Oy = 0 at the wall) 
are computed at different distances Y above the wall for a hot 
wire of 5-1xm diameter at different friction velocities U~ = 0.1, 
0.5, 1.0 m / s  and an overheat temperature of AT = (T w - T=) = 
250°C. The results are plotted in Figure 3 as Nusselt number 
versus Y+ where Y+= UTY/v. The two different conductivities 
represent the extreme wall conditions where the boundary condi- 
tions can be easily specified, and the results obtained form the 
upper and lower limits of the influence of wall conductivity. It 
should be noted that in the viscous sublayer, Y - =  U + and so at a 
particular friction velocity, Y+ is linearly related to the Reynolds 
number (Re) based on the wire diameter d; i.e., Re = Y÷ReT. 
The results in Figure 3 for heat loss with near-wall effects, which 
agree qualitatively with those from Bhatia et al. (1982), can then 
be compared to those in Figure 2 for heat loss without wall 
effects directly. 

It can be deduced from Figure 2 that for flow without wall 
effects, the heat loss decreases rapidly with decreasing Y, be- 
cause the velocity and, hence, Reynolds number is lower at 
smaller Y. In Figure 3, at larger distance from the wall (Y+> 5), 
a similar amount of heat is lost by the wire to both kinds of walls. 
However, as the wire is positioned increasingly closer to the wall, 
the influence of the conducting wall, which is compounded by 
the distortion of the velocity field caused by the presence of the 
wire, causes the heat transfer to increase significantly. A similar 
feature can also be found for the adiabatic wall as Y÷ decreases; 
however, it is less pronounced. However, the heat loss from the 
wire near an adiabatic wall is still higher than the case without 
the wall. Noting that in the latter where there is no heat transfer 
to the adiabatic wall, this provides the evidence that the presence 
of the wire must have distorted the velocity field and altered the 
heat transfer characteristics of the wire. The effect of wire 
diameter cannot be neglected as in the case of Bhatia et al. 
(1982). Their numerical solution with a point heat source repre- 
senting the wire would not be able to detect the near-wall effects 
for adiabatic wall, which led to their conclusion that " n o  correc- 
tions are suggested in the vicinity of non-conducting walls." The 
present finding is also contrary to that of Singh and Shaw (1972) 
who contended that the near-wall effects are independent of wall 
conductivity. 
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Figure 4 The correction curves for conducting and adiabatic 
walls for a 5-txm diameter hot wire 
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Figure 5 Comparison with previous results for a 5-1xm diame- 
ter hot wire near conducting walls 

The heat loss for flow with higher friction velocity is higher, 
as expected. In the viscous sublayer, a higher friction velocity is 
related to higher approaching velocity to the wire resulting in 
higher overall heat loss. 

The near-wall effects on the velocity measurements can be 
obtained from the results in Figures 2 and 3, which represent the 
cases with and without wall effects. The discrepancies in velocity 
measurements caused by the near-wall effects normalized by the 
friction velocity AU + are plotted against Y+ in Figure 4 for the 
cases of infinitely conducting wall and adiabatic wall. The results 
indicate that for a wire with a certain diameter operating at a 
constant overheat ratio near a wall of fixed conductivity, the 
AU + versus Y+ data for different friction velocity collapse onto 
a single correction curve quite well. The influence of U~ is barely 
discernable, which is similar to the findings of Bhatia et al. 
(1982) for their conducting wall; albeit, with a point heat source 
representing the hot wire. The correction curve plotted in Figure 
4 is useful, because it enables the prediction and correction of 
measurement errors attributable to near-wall effects. It shows that 
the measurement errors are much larger for conducting wall than 
adiabatic wall, and errors for other types of wall should theoreti- 
cally fall somewhere in between the two. It is important to note 
that when using hot wire of 5-p.m diameter, measurement error 
will begin to appear at Y+ < 5 for an infinitely conducting wall 
and at Y+< 2 for an adiabatic wall. These findings are in 
agreement with the experimental findings of Bhatia et al. (1982) 
and Chew et al. (1995). 

Comparison with previous results 

The present prediction of correction curve for hot wire of 5-txm 
diameter near a conducting wall is compared to the experimental 
data of Oka and Kostic (1972) based on a 5-1~m wire, Hebbar's 
(1980) data obtained using a 3.8-1xm wire, and the theoretical 
prediction of Bhatia et al. (1982) in Figure 5. Bhatia et al.'s 
calculations generally underpredict the correction for Y+< 2.5 
and overpredict for Y+> 2.5 when compared with the experimen- 
tal data. The present prediction agrees reasonably well with 
experimental results, although it is for an infinitely conducting 
wall. As more heat is lost to the infinitely conducting wall, we 
can expect that the calculated curve should overpredict the 
correction based on experiments. However, the experimental data 
may suffer from 3-D effects, because the length to diameter ratio 
of the wire is finite. Some of the heat will be lost to the prongs, 
which cannot be removed through calibration in free stream, 
because the interference between the prongs and the wall alters 
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the flow pattern and, hence, the heat transfer characteristics of the 
prongs. The additional heat loss to the prongs attributable to wall 
interference effects could have more than accounted for the 
reduced heat loss to the noninfinitely conducting walls, hence 
resulting in the discrepancies. In such a case, we can only try to 
minimize the 3-D effects caused by the prongs by having as large 
a length-to-diameter ratio (L/d)  as possible. For Oka and Kostic, 
the L / d  used for the wire is only 200; whereas in Hebbar, it is 
estimated to be about 300. 

Another point worth noting is that our computed correction 
curve for the 5-txm diameter wire somewhat bears a better 
overall agreement with the experimental result of Oka and Kostic 
(1972) who used a 5-1xm hot wire as opposed to Hebbar's (1980) 
curve based on a 3.8-~m hot wire. As discussed in the next 
section, wire diameter does have an influence on the correction 
curve and may account for this observation. 

Influence of  wire diameter 

The influence of wire diameter on near-wall measurements has 
been the subject of much controversy. Wills (1962) showed 
experimentally that the additional heat loss from the wire at- 
tributable to wall effect:~ is related to the ratio of distance from 
the wall to wire diameter (Y/d)  and Reynolds number. The 
influence of wire diameter is, thus, implicitly implied. Although 
the choice of dimensiordess parameter Y / d  may be suitable to 
study the heat loss from circular cylinder near a wall in general, it 
is not quite suitable for near-wall correction of hot-wire measure- 
ments, because the heat loss is a function of friction velocity. In 
turbulent flow, the friction velocity is time dependent. Because 
the heat loss varies with friction velocity nonlinearly the compu- 
tation of mean heat loss or other mean correction factors becomes 
impossible unless it is done in a postprocessing, nonreal-time 
manner digitally. As shown earlier, the preferred dimensionless 
parameters for near-wall correction of hot-wire measurements are 
AU + and Y÷, because the correction is independent of friction 
velocity. The collapsed correction curve is, thus, unique to a 
particular measurement configuration. 

It is logical to deduce that at a fixed distance away from the 
wall, a larger diameter hot wire would cause larger wall effects. 
This was observed experimentally by Krishnamoorthy et al. 
(1985). With the choice of AU + and Y÷ as the dimensionless 
parameters, the effect of wire diameter on heat loss must be 
represented by another dimensionless parameter. Zemskaya et al. 
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Figure 6 Influence of wire diameters on the correction 
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(1979) modified AU + and Y+ by (d*/d)  °)5 where d is the 
reference diameter of 4.4 i~m and correlated an empirical correc- 
tion formula based on the new dimensionless parameters. 

The computational results presented so far are for d = 5 txm. 
To examine the influence of wire diameters, additional results are 
generated for d = 1 Ixm and 10 Ixm with infinitely conducting 
and adiabatic walls. The results are presented in Figure 6 and 
compared with the empirical correlation of Zemskaya et al. 
(1979). Both our results for the conducting wall and Zemskaya et 
al.'s proposed correlation based on data obtained near the steel 
wall indicate that the influence of wire diameter is large and 
cannot be neglected. The trend of larger correction (i.e., AU ÷) 
for larger wire diameter is clearly discernible. The difference in 
the correction curves with respect to wire diameter that becomes 
larger for smaller Y+ is also observed and can be attributed to 
the stronger effect on the flow field and accompanying heat 
transfer characteristics as the wire moves closer to the wall. It 
leads to nonsymmetrical distortion of the velocity profile and 
temperature wakes (Shi and Chew 1992). The above observations 
for the conducting wall are equally valid for the case of the 
adiabatic wall. It may partly explain the observation made by 
Bhatia et al. (1982) that no correction is required for their 
adiabatic wall, because in their computation, the hot wire is of 
zero diameter. 

Inf luence o f  overheat  ratio 

To investigate the influence of operating overheat ratio of the hot 
wire, computation was done for a wire of 5-1~m diameter near an 
infinitely conducting wall for temperature difference of 50, 100, 
and 250°C between the hot wire and fluid. However, no apparent 
influence is observed when the overheat ratio changes resulting 
in essentially the same correction curve as reflected in Figure 4 
(not shown). This is in apparent contradiction to the findings of 
Krishnamoorthy et al. (1985), which reflect a significant influ- 
ence of overheat ratio of a hot wire in near-wall measurements. 

A possible explanation for the discrepancies is that in the 
present 2-D formulation, the ratio of heat loss to the fluid and to 
the wall remains independent of the overheat ratio for a particular 
measurement configuration. Thus, the near-wall effects on hot- 
wire measurement are the same at different wire temperature. In 
the experiment of Krishnamoorthy et al. (1985), the length-to-di- 
ameter ratio of the wire is only 200, and some additional heat 
will be lost to the prongs causing a deviation from two-dimen- 
sionality. The amount of heat loss to the prongs must be propor- 
tional to the wire temperature and cannot be removed by calibrat- 
ing the hot wire in the free stream. The amount of heat loss to the 
fluid is small in the near-wall region where the velocity is low. 
The 3-D effect caused by proportionally larger heat loss to the 
prongs than the fluid becomes more pronounced as the wall is 
approached. The observed dependence on overheat ratio of the 
near-wall correction by Krishnamoorthy et al. is, thus, the result 
of deviation from two-dimensionality. This is discussed further in 
Chew et al. (1995). 

The negligible influence of overheat ratio on near-wall correc- 
tion is not obvious, because it is intuitive to expect a hotter wire 
would cause larger measurement error. The present computation 
demonstrates the importance of keeping the length-to-diameter 
ratio of the wire as large as practically possible in near-wall 
measurement in order to minimize 3-D effects and reduce the 
influence of overheat ratio. 

C o n c l u d i n g  r e m a r k s  

The present paper shows how computation method can be used 
as a tool to complement physical experiments in the study of 
different wall materials and its influence on the heat transfer 
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characteristics of a near-wall hot wire of various wire diameters. 
The numerical results provide correction curves for limiting cases 
of infinitely long wire, infinitely conducting wall, and infinitely 
nonconducting wall. For an infinitely long 5-~m diameter hot 
wire, measurement error begins to appear at Y+< 5 for an 
infinitely conducting wall and at Y+< 2 for an adiabatic wall. 
Our results also reveal the trend of decreasing correction curve as 
the wire diameter decreases and the invariance of overheat on the 
correction curve, provided the 3-D effects are minimized. It is 
imperative to note the relative importance of the various parame- 
ters on near-wall measurements. This information together with 
the computed correction curves can be used as references by 
experimenters to plan their near-wall measurements with hot wire 
in a most practical way in order to minimize the errors. 
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